
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +82 2

E-mail addr
Journal of Sound and Vibration 318 (2008) 820–829

www.elsevier.com/locate/jsvi
Identification of damage in beam structures
using flexural wave propagation characteristics

Junhong Park�

School of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, South Korea

Received 17 August 2007; received in revised form 25 February 2008; accepted 4 May 2008

Handling Editor L.G. Tham

Available online 24 June 2008
Abstract

An experimental method of detecting damage using the flexural wave propagation characteristics is proposed. To

monitor change in structural properties due to damage, the frequency-dependent variation of the wavenumber, wave

speed, and the dynamic properties were measured in the frequency ranges of flexural vibration. The measured frequency-

dependent variation was compared to those measured when undamaged. The beam transfer function method was used to

obtain the dynamic properties. The location and magnitude of damage were identified using the property that it has

significant impact on the system potential energy. When the wave propagates through a medium, the total system energy

remains mostly unchanged, but its form changes between potential and kinetic energy. The wave propagation

characteristics are affected most when damage occurs at locations where the wave energy is in the form of the potential

energy. The validity of the proposed method was confirmed by experimentation. The various locations of damage imposed

on the beam structures with different magnitudes were identified accurately.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As structures become bigger, wider and heavier, and as they are used for longer periods of time, the need for
practical methods of monitoring structural integrity has increased. Widely used methods of non-destructive
structural integrity evaluation include visual inspection, X-ray and ultrasound. However, these methods
require too long time for inspecting every part of structures and are not practical for real-time health
monitoring. Also, additional hardware is required for excitation of structures and collection of vibration data.
Consequently, low-frequency vibration methods to determine the size and location of damage in structures
have attracted research interest because of their efficiency in structural health monitoring [1].

The natural frequencies of the given systems have most often been used by researchers [2–4]. Crack location
has been predicted accurately by minimizing the difference between measured and predicted values through the
analysis of the effects of crack locations on several natural frequencies. This method requires a small number of
vibration measurements. However, it is difficult to identify effects from the surrounding environment. Also, the
measured natural frequency does not show significant change for damage induced at a nodal point [5]. A more
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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sensitive method was proposed based on the mode shape of the structure [1,5–7]. In this approach, many
sensors are required to detect the mode shapes of the higher-order modes, which could cause practical problems
in installation and maintenance. Adams and Nataraju [8] proposed a structural diagnostic method using
nonlinear vibration characteristics resulting from structural defects. Since the vibration is analyzed based on
modal properties, the method is applicable to arbitrary complex structures. For random vibrations, the
variation of the kurtosis with crack depth was estimated and used in the damage detection [9]. Ma and Pines
[10] proposed a damage identification method by using dereverberation of the measured transfer function. The
dereverberated transfer function represents the direct path of energy transfer. It is not as frequency dependent
as compared with the measured transfer function. Using the dereverberated transfer function, the occurrence of
damage between sensors installed along the structure was estimated. Lamb waves have been widely used as
methods of detecting structural defects [11–13]. The wavelength of the Lamb wave which propagates at much
higher frequencies than the fundamental frequency of the system is small. Lamb wave diffraction can occur
even from small defects in a structure. For structural diagnosis, a qualitative method based on impedance
monitoring techniques was proposed [14–16]. The impedance monitoring method requires a small number of
measurements at high frequencies for advantages related to high sensitivity to small defects.

In this study a new method based on the flexural wave propagation characteristics is proposed. As the
flexural wave propagates, the total system energy remains mostly unchanged, but its form varies between
strain (or potential) and kinetic energy. When damage occurred at locations where the wave energy is stored as
the potential energy, there is a significant impact on the standing wave patterns. The beam transfer function
method [16] was used to analyze the flexural wave propagations. Since the beam transfer function method is
based on theoretical solutions of structural vibration, it required fewer (two or three) vibration measurements.
The obtained frequency-dependent variation of the wave propagation characteristics are sensitive to measured
transfer functions which represent the current structural integrity. The location and severity of damage was
estimated using the measured dynamic properties. Since the result from the beam transfer function method is a
continuous variation of the dynamic properties with frequency, effects of surrounding environment are
minimized, and modal property measurements are not necessary.

2. Damage identification

2.1. Equivalent dynamic properties

When damage occurred in the cross-sectional area of structures, it results in a significant reduction in load-
carrying capacity. Thus there is a reduction in the stored potential energy. When the effects of shear
deformation and rotary inertia are negligible compared to those of bending deformation, the potential and
kinetic energy of a vibrating beam is obtained respectively as
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Z L
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where w is the flexural displacement, D is the bending stiffness, M is the mass per unit length and L is the
length. The total potential energy stored in the system is determined by the standing wave pattern, Fig. 1. The
standing wave pattern depends on the boundary conditions, and Fig. 1 shows potential and kinetic energy for
the cantilever beam at different frequencies. When damage occurred at locations of large potential energy, the
reduction of the potential energy is large. But the damage has negligible impact on the system kinetic energy.
In this study, the equivalent dynamic properties obtained using the structural wavenumber is used to estimate
this change, Fig. 2. The equation of motion for vibrating beams is obtained as

D
q4w
qx4
þM

q2w
qt2
¼ 0. (2)

Assuming harmonic motion, i.e., wðx; tÞ ¼ RefŵðxÞeiotg, the separation of variables to solve Eq. (2) is
performed. To model the dissipation of vibration energy within a structure, complex stiffness is used:

D̂ðoÞ ¼ DðoÞ½1þ iZDðoÞ�, (3)
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Fig. 1. Dependence of the potential and kinetic energy on the damage location and standing wave pattern.
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Fig. 2. Equivalent dynamic properties of a beam structure.

J. Park / Journal of Sound and Vibration 318 (2008) 820–829822
where ZD is the loss factor and D(o) is the dynamic bending stiffness. For undamaged beam the bending
stiffness is obtained as E(o)t3b/12 where E(o) is the elastic modulus and b is the width of the beam. For the
damaged beam, the equivalent dynamic bending stiffness can be smaller or larger than those measured for
undamaged structures. In most cases, it is expected that the dynamic bending stiffness decreases with an
increasing magnitude of damage due to reduction in the system potential energy.

2.2. Sensitivity of dynamic bending stiffness on damage location

The wave propagation approach is used to obtain the sensitivity of the dynamic bending stiffness on the
damage location. The satisfying beam function of Eq. (2) is

ŵðxÞ ¼ Â1 sin k̂bxþ Â2 cos k̂bxþ Â3e
k̂bðx�LÞ þ Â4e

�k̂bx, (4)

where k̂b is the wavenumber related to the circular frequency through k̂b ¼ ðo2M=D̂Þ1=4. Â1 and Â2 are the
complex amplitudes of propagating waves. Â3 and Â4 are the magnitudes of exponentially decaying waves at
x ¼ L and x ¼ 0, respectively. When the cantilever beam was excited at its free end, the four boundary
conditions are imposed as
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qx
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q2ŵðLÞ
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¼ 0; D̂

q3ŵðLÞ

q3x
¼ F , (5a2d)

where F is the force applied at x ¼ L. The following matrix system of equations is obtained as
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The above matrix system of equations is solved to obtain the unknown coefficients Â1 � Â4, and
consequently, the beam displacements, potential and kinetic energy. Due to the standing wave, the magnitude
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of the potential energy stored in the system shows a cyclic variation with frequency. The potential energy
becomes maximum at the resonance frequencies. The amount of the decreased potential energy is most
significant when damage occurred at locations where the radius of curvature (q2w=qx2) is largest. The
sensitivity of the dynamic bending stiffness on damage depends on the relative amounts of the potential energy
stored at the damage location to average potential energy stored in the structure and is calculated as

SDðx;oÞ ¼
D

2ðV=LÞ

q2wðx;oÞ
qx2

� �2

. (7)

If damage occurred at x and sensitivity, SD, is large, there is a significant reduction in the dynamic bending
stiffness obtained at frequency o. Fig. 3 shows the dependence of sensitivity on the frequency and the damage
location for the cantilever beam. The sensitivity was largest when the damage location was close to the fixed
end of the beam (x ¼ 0). It was relatively small when damage was located at the free end. In between the two
extremes, the sensitivity exhibited cyclic variation with frequency and location. The variation of the sensitivity
with frequency was not identical when the damage location was different. The number of local maximum
increased with the increasing frequency. Its variation also depends on the boundary conditions. Fig. 4 shows
the variation for the free–free beam excited at the free end. The four boundary conditions are

q2ŵð0Þ

q2x
¼ 0;

q3ŵð0Þ

q3x
¼ 0;

q2ŵðLÞ

q2x
¼ 0; D̂

q3ŵðLÞ

q3x
¼ F . (8a2d)

Using the same procedure as for the cantilever beam, the sensitivity was calculated. The sensitivity was small
when damage occurred at free ends of the beam. Similarly to the cantilever beam, the sensitivity showed cyclic
variation with frequency. Its variation depended on the damage location. Wide variety of boundary conditions
such as spring supported ends should be constructed based on the actual supporting mechanism of structures.
The sensitivity can be calculated following the same procedures.

From the variation of the measured dynamic properties and comparison to sensitivity of the dynamic
bending stiffness, the damage location was identified. From the measured values and by monitoring the
change of the dynamic bending stiffness, DDðokÞ ¼ Dundamaged �Ddamaged, the damage indicator (DI) was
calculated as

DIðxÞ ¼
Xn

k¼1

DDðokÞSDðx;okÞ

�����
����� (9)
Fig. 3. Sensitivity variation with the frequency and damage location for cantilever beams.
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Fig. 4. Sensitivity variation with the frequency and damage location for beams with free–free boundary conditions.
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This damage indicator was calculated from x ¼ 0 to L. Among the calculated values, the location resulting in
the maximum values was identified. The maximum and large absolute value of DI compared to values
obtained for undamaged structures suggests that damage has occurred at that location.

The loss stiffness ( ¼ ZDD) was not used in obtaining the damage indicator since the reduction in the loss
stiffness due to damage was not expected. For calculation of the damage indicator, the change in the dynamic
bending stiffness is required. This change is measured and monitored using the beam transfer function
method.
2.3. Beam transfer function method

The beam transfer function method is the experimental method of measuring the flexural stiffness of
arbitrary beam structure [16]. To obtain the wave propagation characteristics from the measured vibration
responses, the predicted beam displacement is compared to the measured value as

Leif ¼
ŵðx1Þ

ŵðLÞ
¼

Â1 sin k̂bx1 þ Â2 cos k̂bx1 þ Â3e
k̂bðx1�LÞ þ Â4e

�k̂bx1

Â1 sin k̂bLþ Â2 cos k̂bLþ Â3 þ Â4e�k̂bL
, (10)

where L is the amplitude and f is the phase of the measured transfer functions between the displacements.
Then, the Newton–Rapson method was applied to solve Eq. (10) with respect to the complex wavenumber,
k̂b ¼ kbr � ikbi. After separating the real and imaginary parts, the iterations to solve the above equation are
conducted as
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" #
, (11)

where the subscripts j and j+1 denote the current and next iterations, respectively. Using the complex
wavenumber obtained through the Newton–Rapson method, the complex bending stiffness was consequently
obtained

D̂ ¼
o2M

k̂
4

b

. (12)
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The measured dynamic bending stiffness is the real part of the complex stiffness in Eq. (12) and used in the
damage identification.
3. Results and discussion

To verify the proposed monitoring methods, experiments were performed using Plexiglas beams. The
length, width and thickness of the beams were 0.77, 0.02 and 0.02m, respectively. One end of the beam was
fixed. The other end of the beam was excited by an impact hammer. The resulting vibration of the beam was
measured using miniature piezoelectric accelerometers (Endevco model 2250-A) located at x1 ¼ 0.62m and
free end (x ¼ L). Care was taken to prevent double impacts and to generate a force as consistent as possible.

Fig. 5 shows the measured transfer function between the beam displacements when damage (crack) was
generated at x ¼ L/2 and 2L/3 by saw-cut. The measured transfer functions were very similar to the predicted
values using Eq. (10) when there is no crack. As the crack depth, hc, was increased, the measured resonance
frequencies decreased. Depending on the damage location, there is a significant difference in frequency-
dependent variation of the measured transfer function. If this information is used in structural health
monitoring, it may result in a better identification compared to prediction by natural frequency alone.
However, the information about damage cannot be obtained directly from this variation since it is influenced
also by the modal responses. In addition, there was no significant change in the measured transfer function
until the crack depth reached 6mm (30% loss in the beam cross-sectional area).

Instead of using the measured transfer function directly for structural health monitoring, the dynamic
properties were obtained. Fig. 6 shows the measured properties for undamaged beam. The bending stiffness
became larger with the increasing frequency. The loss factor was less than 0.1 and continued to decrease with
the increasing frequency. This value and its frequency-dependent variation were similar to those reported in
Ref. [16].

When damage was induced, the obtained bending stiffness did not increase monotonically but showed cyclic
variation with frequency as shown in Fig. 7. For the beams tested, the variation of the sensitivity of the
dynamic bending stiffness with frequency was calculated using Eq. (7), as shown in Fig. 8. With the increasing
crack depth, the measured dynamic bending stiffness varied as predicted by the sensitivity of the dynamic
bending stiffness in Fig. 8. One method to find the damage location is a visual comparison of the change in the
dynamic bending stiffness shown in Fig. 7 with the predicted sensitivity in Fig. 8, which provides an
Fig. 5. Measured transfer function for different locations and magnitudes of damage, hc/t: , 0; , 0.2; , 0.4; ,

0.6; , 0.8, and predictions for homogeneous beam (– � – � – � ). (a) xc ¼ L/2 and (b) xc ¼ 2L/3.
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Fig. 6. Measured complex bending stiffness of the undamaged beam.

Fig. 7. Variation of the measured dynamic bending stiffness for different locations and magnitudes of damage, hc/t: , 0; ,

0.2; , 0.4; , 0.6; , 0.8. (a) xc ¼ L/2 and (b) xc ¼ 2L/3.
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approximate location. To determine the exact location, the DI was obtained as shown in Fig. 9. The sensitivity
in Fig. 3 was used in the calculation. Theoretically the indicator function should be zero when undamaged.
Due to several experimental uncertainties in measuring the transfer function, it does not converge to zero.
However the magnitude should be small. With increasing crack depth there was significant increase in the
damage indicator, DI.

There are several local maxima in the calculated damage indicator. Among the local maxima, the first or
second maximum values were picked out. The crack location resulting in this maximum was identified (Fig. 9)
and is tabulated in Table 1. The locations were identified within errors less than 1–4% when the crack
magnitude is larger than 2mm (hc/t ¼ 0.1). In Table 2, the beams with the crack induced at nine different
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Fig. 8. Sensitivity variation with damage location, xc: – – – – –, L/2; – � – � – � , 2L/3.

Fig. 9. Damage indicator and identified locations (.) of damage for different crack depth, hc/t: , 0.1; , 0.2; , 0.3;

, 0.4; , 0.5; , 0.6; , 0.7; , 0.8; , 0.9. (a) xc ¼ L/2 and (b) xc ¼ 2L/3.
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locations were also tested, and the estimated locations were tabulated. The proposed method resulted in
accurate localization of damage for the different crack magnitudes and locations. Even when there was no
significant variation in the measured transfer function, for example, hc/to0.2, in Fig. 5, the location was
identified accurately.

In the proposed health monitoring method, only two vibration measurements are necessary. It was not
obvious whether the first or the second maximum value of the damage indicator resulted in the actual damage
location. If the sensitivity calculated using Eq. (7) and the reduction in the dynamic bending stiffness is
orthogonal, there should be only one maximum. However, there is no orthogonality condition in between the
sensitivity and the reduction of the dynamic bending stiffness since the sensitivity was calculated as a positive
real number. Also, the reduction is affected by the mechanical properties of the crack. A large number results
when the location of damage is assumed to be located where the potential energy is large. This location
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Table 1

Comparison of damage location estimated from first or second maximum of damage indicator to true value for various crack magnitudes

(percentage of error in parenthesis)

Crack depth (hc, mm) True value, xc/L ¼ 0.5 True value, xc/L ¼ 0.667

Estimated value, xc/L Estimated value, xc/L

First maximum Second maximum First maximum Second maximum

2 – 0.45 (5%) – 0.747 (8%)

4 0.46 (4%) – – 0.677 (1%)

6 0.513 (1.3%) – 0.673 (0.7%) –

8 0.517 (1.6%) – 0.673 (0.7%) –

10 0.52 (2%) – 0.673 (0.7%) –

12 0.527 (2.7%) – 0.677 (1%) –

14 0.517 (1.7%) – 0.68 (1.3%) –

16 – 0.523 (2.3%) 0.687 (2%) –

18 – 0.533 (3.3%) 0.69 (2.33%) –

Table 2

Comparison of damage location estimated from first or second maximum of damage indicator to true value when crack (hc ¼ 4mm) was

induced at various locations (percentage of error in parenthesis)

True value, xc/L Estimated value, xc/L

First maximum Second maximum

0.11 0.13 (1.9%) –

0.22 0.23 (0.778%) –

0.33 – 0.32 (1.3%)

0.44 0.447 (0.2%) –

0.5 0.46 (4%) –

0.56 0.557 (0.1%) –

0.67 – 0.677 (1%)

0.78 – 0.737 (4%)

0.89 – 0.891 (0.1%)
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experiences large strain when the structure vibrates and should be inspected when damage in the structure is
anticipated. Based on one or two values that induce maximum of the damage indicator, the location and
magnitude of crack was identified.

The absolute value of the damage indicator is not directly related to the actual magnitude of the crack.
However, this information can be obtained from experiments using actual systems or from numerical model
predictions beforehand, and used for estimating actual crack magnitude during real-time health monitoring of
structures.

4. Conclusions

The method to identify damage in a beam structure using the flexural wave propagation was presented. The
beam vibration characteristics were measured using the beam transfer function method. The frequency-
dependent variation in the dynamic properties due to damage was predicted from the wave propagation
approach and the system potential energy. Using this sensitivity and the variation of the equivalent dynamic
bending stiffness, the location was monitored accurately using a small (two) number of vibration
measurements even when the magnitude of damage is small. Since the temperature or surrounding fluid
loading effects do not yield cyclic variation in the measured dynamic bending stiffness, their effects can be
distinguished from those of damage. The proposed method utilizes the frequency-dependent variation of the
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dynamic properties and the system potential energy. Consequently, the method is applicable even when
damage occurred at nodes of the standing waves. Since the identification process does not require complicated
numerical model or adaptive iterations, it does not require long computational time, which is advantageous
for continuous real-time structural health monitoring.
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